Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.681
Filtrar
1.
Invest Ophthalmol Vis Sci ; 65(3): 30, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38517430

RESUMO

Purpose: Intraflagellar transport 46 (IFT46) is an integral subunit of the IFT-B complex, playing a key role in the assembly and maintenance of primary cilia responsible for transducing signaling pathways. Despite its predominant expression in the basal body of cilia, the precise role of Ift46 in ocular development remains undetermined. This study aimed to elucidate the impact of neural crest (NC)-specific deletion of Ift46 on ocular development. Methods: NC-specific conditional knockout mice for Ift46 (NC-Ift46F/F) were generated by crossing Ift46F mice with Wnt1-Cre2 mice, enabling the specific deletion of Ift46 in NC-derived cells (NCCs). Sonic Hedgehog (Shh) and Notch signaling activities in NC-Ift46F/F mice were evaluated using Gli1lacZ and CBF:H2B-Venus reporter mice, respectively. Cell fate mapping was conducted using ROSAmTmG reporter mice. Results: The deletion of Ift46 in NCCs resulted in a spectrum of ocular abnormalities, including thickened corneal stroma, hypoplasia of the anterior chamber, irregular iris morphology, and corneal neovascularization. Notably, this deletion led to reduced Shh signal activity in the periocular mesenchyme, sustained expression of key transcription factors Foxc1, Foxc2 and Pitx2, along with persistent cell proliferation. Additionally, it induced increased Notch signaling activity and the development of ectopic neovascularization within the corneal stroma. Conclusions: The absence of primary cilia due to Ift46 deficiency in NCCs is associated with anterior segment dysgenesis (ASD) and corneal neovascularization, suggesting a potential link to Axenfeld-Rieger syndrome, a disorder characterized by ASD. This underscores the pivotal role of primary cilia in ensuring proper anterior segment development and maintaining an avascular cornea.


Assuntos
Cílios , Neovascularização da Córnea , Anormalidades do Olho , Camundongos , Animais , Cílios/metabolismo , Crista Neural/metabolismo , Neovascularização da Córnea/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Córnea , Camundongos Knockout , Proteínas do Citoesqueleto/metabolismo
2.
J Nanobiotechnology ; 22(1): 134, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38549081

RESUMO

BACKGROUND: Corneal neovascularization (CoNV) threatens vision by disrupting corneal avascularity, however, current treatments, including pharmacotherapy and surgery, are hindered by limitations in efficacy and adverse effects. Minocycline, known for its anti-inflammatory properties, could suppress CoNV but faces challenges in effective delivery due to the cornea's unique structure. Therefore, in this study a novel drug delivery system using minocycline-loaded nano-hydroxyapatite/poly (lactic-co-glycolic acid) (nHAP/PLGA) nanoparticles was developed to improve treatment outcomes for CoNV. RESULTS: Ultra-small nHAP was synthesized using high gravity technology, then encapsulated in PLGA by a double emulsion method to form nHAP/PLGA microspheres, attenuating the acidic by-products of PLGA degradation. The MINO@PLGA nanocomplex, featuring sustained release and permeation properties, demonstrated an efficient delivery system for minocycline that significantly inhibited the CoNV area in an alkali-burn model without exhibiting apparent cytotoxicity. On day 14, the in vivo microscope examination and ex vivo CD31 staining corroborated the inhibition of neovascularization, with the significantly smaller CoNV area (29.40% ± 6.55%) in the MINO@PLGA Tid group (three times daily) than that of the control group (86.81% ± 15.71%), the MINO group (72.42% ± 30.15%), and the PLGA group (86.87% ± 14.94%) (p < 0.05). Fluorescein sodium staining show MINO@PLGA treatments, administered once daily (Qd) and three times daily (Tid) demonstrated rapid corneal epithelial healing while the Alkali injury group and the DEX group showed longer healing times (p < 0.05). Additionally, compared to the control group, treatments with dexamethasone, MINO, and MINO@PLGA were associated with an increased expression of TGF-ß as evidenced by immunofluorescence, while the levels of pro-inflammatory cytokines IL-1ß and TNF-α demonstrated a significant decrease following alkali burn. Safety evaluations, including assessments of renal and hepatic biomarkers, along with H&E staining of major organs, revealed no significant cytotoxicity of the MINO@PLGA nanocomplex in vivo. CONCLUSIONS: The novel MINO@PLGA nanocomplex, comprising minocycline-loaded nHAP/PLGA microspheres, has shown a substantial capacity for preventing CoNV. This study confirms the complex's ability to downregulate inflammatory pathways, significantly reducing CoNV with minimal cytotoxicity and high biosafety in vivo. Given these findings, MINO@PLGA stands as a highly promising candidate for ocular conditions characterized by CoNV.


Assuntos
Neovascularização da Córnea , Minociclina , Humanos , Minociclina/farmacologia , Neovascularização da Córnea/tratamento farmacológico , Neovascularização da Córnea/prevenção & controle , Microesferas , 60489 , Álcalis
3.
J Tradit Chin Med ; 44(2): 268-276, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38504533

RESUMO

OBJECTIVE: To investigate the effects of emodin on alkali burn-induced corneal inflammation and neovascularization. METHODS: The ability of emodin to target vascular endothelial growth factor receptor 2 (VEGFR2) was predicted by molecular docking. The effects of emodin on the invasion, migration, and proliferation of human umbilical vein endothelial cells (HUVEC) were determined by cell counting kit-8, Transwell, and tube formation assays. Analysis of apoptosis was performed by flow cytometry. CD31 levels were examined by immunofluorescence. The abundance and phosphorylation state of VEGFR2, protein kinase B (Akt), signal transducer and activator of transcription 3 (STAT3), and P38 were examined by immunoblot analysis. Corneal alkali burn was performed on 40 mice. Animals were divided randomly into two groups, and the alkali-burned eyes were then treated with drops of either 10 µM emodin or phosphate buffered saline (PBS) four times a day. Slit-lamp microscopy was used to evaluate inflammation and corneal neovascularization (CNV) in all eyes on Days 0, 7, 10, and 14. The mice were killed humanely 14 d after the alkali burn, and their corneas were removed and preserved at -80 ℃ until histological study or protein extraction. RESULTS: Molecular docking confirmed that emodin was able to target VEGFR2. The findings revealed that emodin decreased the invasion, migration, angiogenesis, and proliferation of HUVEC in a dose-dependent manner. In mice, emodin suppressed corneal inflammatory cell infiltration and inhibited the development of corneal neovascularization induced by alkali burn. Compared to those of the PBS-treated group, lower VEGFR2 expression and CD31 levels were found in the emodin-treated group. Emodin dramatically decreased the expression of VEGFR2, p-VEGFR2, p-Akt, p-STAT3, and p-P38 in VEGF-treated HUVEC. CONCLUSION: This study provides a new avenue for evaluating the molecular mechanisms underlying corneal inflammation and neovascularization. Emodin might be a promising new therapeutic option for corneal alkali burns.


Assuntos
Queimaduras Químicas , Neovascularização da Córnea , Emodina , Humanos , Camundongos , Animais , Neovascularização da Córnea/tratamento farmacológico , Neovascularização da Córnea/genética , Neovascularização da Córnea/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Queimaduras Químicas/tratamento farmacológico , Queimaduras Químicas/metabolismo , Queimaduras Químicas/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Simulação de Acoplamento Molecular , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/genética , Transdução de Sinais , Células Endoteliais da Veia Umbilical Humana , Inflamação/tratamento farmacológico , Modelos Animais de Doenças
4.
ACS Nano ; 18(11): 8209-8228, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38452114

RESUMO

Protein drugs have been widely used in treating various clinical diseases because of their high specificity, fewer side effects, and favorable therapeutic effect, but they greatly suffer from their weak permeability through tissue barriers, high sensitivity to microenvironments, degradation by proteases, and rapid clearance by the immune system. Herein, we disrupted the standard protocol where protein drugs must be delivered as the cargo via a delivery system and innovatively developed a free entrapping matrix strategy by simply mixing bevacizumab (Beva) with zinc ions to generate Beva-NPs (Beva-Zn2+), where Beva is coordinatively cross-linked by zinc ions with a loading efficiency as high as 99.2% ± 0.41%. This strategy was universal to generating various protein NPs, with different metal ions (Cu2+, Fe3+, Mg2+, Sr2+). The synthetic conditions of Beva-NPs were optimized, and the generated mechanism was investigated in detail. The entrapment, releasing profile, and the bioactivities of released Beva were thoroughly studied. By using in situ doping of the fourth-generation polyamindoamine dendrimer (G4), the Beva-G4-NPs exhibited extended ocular retention and penetration through biobarriers in the anterior segment through transcellular and paracellular pathways, effectively inhibiting corneal neovascularization (CNV) from 91.6 ± 2.03% to 13.5 ± 1.87% in a rat model of CNV. This study contributes to engineering of protein NPs by using a facile strategy for overcoming the weaknesses of protein drugs and protein NPs, such as weak tissue barrier permeability, low encapsulation efficiency, poor loading capacity, and susceptibility to inactivation.


Assuntos
Neovascularização da Córnea , Nanopartículas , Ratos , Animais , Neovascularização da Córnea/tratamento farmacológico , Nanopartículas/uso terapêutico , Íons , Zinco
5.
Int J Biol Macromol ; 261(Pt 2): 129933, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309411

RESUMO

Corneal neovascularization (CNV) is a common multifactorial sequela of anterior corneal segment inflammation, which could lead to visual impairment and even blindness. The main treatments available are surgical sutures and invasive drug injections, which could cause serious ocular complications. To solve this problem, a thermo-sensitive drug-loaded hydrogel with high transparency was prepared in this study, which could achieve the sustained-release of drugs without affecting normal vision. In briefly, the thermo-sensitive hydrogel (PFNOCMC) was prepared from oxidized carboxymethyl cellulose (OCMC) and aminated poloxamer 407 (PF127-NH2). The results proved the PFNOCMC hydrogels possess high transparency, suitable gel temperature and time. In the CNV model, the PFNOCMC hydrogel loading bone morphogenetic protein 4 (BMP4) showed significant inhibition of CNV, this is due to the hydrogel allowed the drug to stay longer in the target area. The animal experiments on the ocular surface were carried out, which proved the hydrogel had excellent biocompatibility, and could realize the sustained-release of loaded drugs, and had a significant inhibitory effect on the neovascularization after ocular surface surgery. In conclusion, PFNOCMC hydrogels have great potential as sustained-release drug carriers in the biomedical field and provide a new minimally invasive option for the treatment of neovascular ocular diseases.


Assuntos
Neovascularização da Córnea , Hidrogéis , Animais , Hidrogéis/farmacologia , Neovascularização da Córnea/tratamento farmacológico , Neovascularização da Córnea/metabolismo , Carboximetilcelulose Sódica/uso terapêutico , Preparações de Ação Retardada/uso terapêutico , Poloxâmero/uso terapêutico
7.
Exp Eye Res ; 240: 109779, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38176514

RESUMO

This study aimed to evaluate the effects of platelet-rich plasma (PRP), autologous blood serum (ABS), and umbilical cord serum (UCS) on corneal healing following penetrating keratoplasty (PK). A total of 120 New Zealand white rabbits, forty were designated as donors, while the remaining eighty rabbits were randomly divided into four groups after undergoing PRP Group (n = 20), ABS Group (n = 20), UCS Group (n = 20) and Control Group (n = 20). Corneal opacity score, corneal vascularization, corneal staining, histopathological analysis, and immunohistochemical analysis (including CD4+, CD8+, and major histocompatibility complex [MHC] II) were assessed at postoperative 1, 2, 3, and 12 weeks. The results showed that corneal opacity score and corneal vascularization did not differ significantly among the groups. However, corneal staining was found to be statistically higher in the PRP group (0.40 ± 0.60) compared to the other groups (p = 0.011). Immunohistochemical examination revealed no significant differences in CD4+, CD8+, and MHC II levels among the groups. Notably, in all groups, CD4+, CD8+, and MHC II levels were significantly higher at 12 weeks compared to other time points. PRP, ABS, and UCS demonstrated positive effects on corneal healing after PK. However, among the three products, PRP exhibited a superior healing effect compared to ABS and UCS crucial in the postoperative period following PK procedures, as they significantly impact visual quality, graft transparency, graft survival, and prevention of stromal resorption caused by infections. Despite the avascular nature of the cornea and its immune privilege, failure to resolve epithelial defects (ED) commonly observed after PK can result in irreversible scarring and ulceration, leading to graft rejection. While epithelial defects are observed in 14-100% of cases on the first postoperative day, approximately 3-7% of them persist as non-healing ED in subsequent periods. In conclusion, our study demonstrated that PRP, ABS, and UCS have a positive effect on corneal healing after PK.


Assuntos
Neovascularização da Córnea , Opacidade da Córnea , Plasma Rico em Plaquetas , Coelhos , Animais , Ceratoplastia Penetrante/métodos , Soro , Córnea , Cordão Umbilical
8.
Invest Ophthalmol Vis Sci ; 65(1): 21, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38190126

RESUMO

Purpose: Corneal neovascularization (CNV) impairs corneal transparency and visual acuity. The study aims to deepen our understanding of the molecules involved in CNV induced by alkali burns, facilitate a better grasp of CNV mechanisms, and uncover potential therapeutic targets. Methods: Eighty-four mice were selected for establishing CNV models via alkali burns. On days 3, 7, and 14 after the burns, corneal observations and histological investigations were conducted. An integrated analysis of RNA sequencing (RNA-seq)-based transcriptomics and label-free quantitative proteomics was performed in both normal and burned corneas. Bioinformatics approaches, encompassing Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, were applied to discern differentially expressed genes (DEGs) and crucial signaling pathways. Four potentially CNV-related genes were validated using quantitative real-time PCR (qRT-PCR) and Western blot. Results: Significant CNV was observed on the seventh day. Forty-one genes were differentially expressed in neovascularized corneas, with 15 upregulated and 26 downregulated at both mRNA and protein levels. Bioinformatics analysis revealed that these DEGs participated in diverse biological processes, encompassing retinol and retinoic acid metabolism, neutrophil chemotaxis, and actin filament assembly, along with significant enrichment pathways like cytochrome P450, tyrosine, and phenylalanine metabolism. The upregulation of lymphocyte cytosolic protein 1 (LCP1) and cysteine and glycine-rich protein 2 (CSRP2) genes and the downregulation of transglutaminase 2 (TGM2) and transforming growth factor-beta-induced (TGFBI) genes were confirmed. Conclusions: We analyzed gene expression differences in mouse corneas 7 days after alkali burns, finding 41 genes with altered expression. The exact role of these genes in CNV is not fully understood, but exploring angiogenesis-related molecules offers potential for CNV treatment or prevention.


Assuntos
Queimaduras Químicas , Neovascularização da Córnea , Animais , Camundongos , Neovascularização da Córnea/genética , Queimaduras Químicas/genética , Proteômica , Neovascularização Patológica , Perfilação da Expressão Gênica , Modelos Animais de Doenças
9.
Methods Mol Biol ; 2766: 43-53, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38270866

RESUMO

Histological analysis is a morphological technique and an effective method for understanding the pathology of rheumatoid arthritis (RA). RA is an inflammatory disease characterized by increased synovial tissue and osteoclasts, angiogenesis, infiltration of inflammatory cells, and pannus formation. These pathologies can be observed in a collagen-induced arthritis model mouse using formaldehyde-fixated paraffin-embedded (FFPE) samples. For the preparation of FFPE samples, the conditions of the fixation and decalcification process significantly affect tissue staining results. Since the lesion sites include bone tissue, a decalcification process is necessary when preparing an FFPE sample. Therefore, selecting an optimal condition for the fixating and decalcifying solution is important. In this chapter, we describe the procedures of preparing paraffin samples, including fixation, decalcification, embedding, and sectioning from the RA model mouse, as well as different staining methods (hematoxylin and eosin, tartrate-resistant acid phosphatase).


Assuntos
Artrite Experimental , Artrite Reumatoide , Neovascularização da Córnea , Animais , Camundongos , Artrite Experimental/induzido quimicamente , Osso e Ossos , Corantes , Formaldeído , Parafina
10.
Sci Rep ; 14(1): 2124, 2024 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-38267485

RESUMO

The presence of corneal vascularization (CV) interferes with the angiogenic and immune privilege of the cornea, risking rejection in eyes following keratoplasty. Pre-operative (lymph)-angioregression is a promising therapeutic approach, but objective monitoring by non-invasive CV imaging is needed. The purpose of this study was to investigate anterior-segment optical coherence tomography angiography (AS-OCTA) for CV visualization and quantification, and to show its superiority over slit-lamp photography in high-risk eyes scheduled for keratoplasty. This institutional pilot study included 29 eyes of 26 patients (51 ± 16 years, 8 female) with significant CV scheduled for keratoplasty that were imaged by slit-lamp photography (Zeiss SL 800) and AS-OCTA (Zeiss Plex Elite 9000). After manual corneal layer segmentation correction, CV maximum/relative depth was measured with the inbuilt software. Slit-lamp photographs and AS-OCTA images were compared for visualization of vascular details. Angiotool software allowed a semi-automated determination of CV-related parameters in the vascular complex of AS-OCTA images. The predominant causes of CV were the herpes simplex virus keratitis (n = 7) and chemical burn (n = 4). Visualization of vascular morphology in AS-OCTA was superior to slit-lamp photography in all except one eye. Vascular metrics including total vessel length, number of junctions/endpoints, junction density, lacunarity, and vessel area/density were defined using Angiotool, with CV depth localization despite scarring and opacification. AS-OCTA proved effective for angioregressive treatment monitoring. AS-OCTA enables non-invasive and objective three-dimensional visualization of corneal vascularization superior to slit-lamp photography, and could be a precious tool for monitoring angioregressive preconditioning prior to keratoplasty.


Assuntos
Neovascularização da Córnea , Tomografia de Coerência Óptica , Humanos , Feminino , Projetos Piloto , Neovascularização da Córnea/diagnóstico por imagem , Córnea/diagnóstico por imagem , Angiografia
11.
Invest Ophthalmol Vis Sci ; 65(1): 37, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38252525

RESUMO

Purpose: Previously we demonstrated that the secreted Ly-6/uPAR related protein 1 (SLURP1), abundantly expressed in the corneal epithelium (CE) and secreted into the tear fluid, serves as an antiangiogenic molecule. Here we describe the Slurp1-null (Slurp1X-/-) mouse corneal response to silver nitrate (AgNO3) cautery. Methods: Five days after AgNO3 cautery, we compared the wild-type (WT) and Slurp1X-/- mouse (1) corneal neovascularization (CNV) and immune cell influx by whole-mount immunofluorescent staining for CD31 and CD45, (2) macrophage and neutrophil infiltration by flow cytometry, and (3) gene expression by quantitative RT-PCR. Quantitative RT-PCR, immunofluorescent staining, and immunoblots were employed to evaluate the expression, phosphorylation status, and subcellular localization of NF-κB pathway components. Results: Unlike the WT, the Slurp1X-/- corneas displayed denser CNV in response to AgNO3 cautery, with more infiltrating macrophages and neutrophils and greater upregulation of the transcripts encoding VEGFA, MMP2, IL-1b, and vimentin. At 2, 7, and 10 days after AgNO3 cautery, Slurp1 expression was significantly downregulated in the WT corneas. Compared with the WT, naive Slurp1X-/- CE displayed increased phosphorylation of IKK(a/b), elevated phosphorylation of IκB with decreased amounts of total IκB, and higher phosphorylation of NF-κB, suggesting that NF-κB signaling is constitutively active in naive Slurp1X-/- corneas. Conclusions: Enhanced angiogenic inflammation in AgNO3 cauterized Slurp1X-/- corneas and constitutively active status of NF-κB signaling in the absence of Slurp1 suggest that Slurp1 modulates corneal angiogenic inflammation via NF-κB signaling.


Assuntos
Neovascularização da Córnea , Ceratite , Transdução de Sinais , Animais , Camundongos , Córnea , Neovascularização da Córnea/metabolismo , Neovascularização da Córnea/patologia , Inflamação , Ceratite/metabolismo , NF-kappa B
12.
Exp Eye Res ; 238: 109739, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38042515

RESUMO

Corneal alkali burns often occur in industrial production and daily life, combined with infection, and may cause severe eye disease. Oxidative stress and neovascularization (NV) are important factors leading to a poor prognosis. URP20 is an antimicrobial peptide that has been proven to treat bacterial keratitis in rats through antibacterial and anti-NV effects. Therefore, in this study, the protective effect and influence mechanism of URP20 were explored in a rat model of alkali burn together with pathogenic bacteria (Staphylococcus aureus and Escherichia coli) infection. In addition, human umbilical vein endothelial cells (HUVECs) and human corneal epithelial cells (HCECs) were selected to verify the effects of URP20 on vascularization and oxidative stress. The results showed that URP20 treatment could protect corneal tissue, reduce corneal turbidity, and reduce the NV pathological score. Furthermore, URP20 significantly inhibited the expression of the vascularization marker proteins VEGFR2 and CD31. URP20 also reduced the migration ability of HUVECs. In terms of oxidative stress, URP20 significantly upregulated SOD and GSH contents in corneal tissue and HCECs (treated with 200 µM H2O2) and promoted the expression of the antioxidant protein Nrf2/HO-1. At the same time, MDA and ROS levels were also inhibited. In conclusion, URP20 could improve corneal injury combined with bacterial infection in rats caused by alkali burns through antibacterial, anti-NV, and antioxidant activities.


Assuntos
Infecções Bacterianas , Queimaduras Químicas , Lesões da Córnea , Neovascularização da Córnea , Queimaduras Oculares , Ratos , Humanos , Animais , Queimaduras Químicas/complicações , Queimaduras Químicas/tratamento farmacológico , Queimaduras Químicas/metabolismo , Neovascularização da Córnea/metabolismo , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Peróxido de Hidrogênio/farmacologia , Neovascularização Patológica/metabolismo , Lesões da Córnea/tratamento farmacológico , Células Endoteliais da Veia Umbilical Humana , Antibacterianos/uso terapêutico , Antibacterianos/farmacologia , Queimaduras Oculares/induzido quimicamente , Queimaduras Oculares/tratamento farmacológico , Queimaduras Oculares/patologia , Modelos Animais de Doenças , Álcalis/toxicidade
13.
Adv Healthc Mater ; 13(5): e2302192, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38018632

RESUMO

Corneal neovascularization (CNV) is one of the leading causes of blindness in the world. In clinical practice; however, it remains a challenge to achieve a noninvasive and safe treatment. Herein, a biocompatible shell with excellent antioxidant and antivascularity is prepared by co-assembly of epigallocatechin gallate/gallic acid and Cu (II). After loading glucose oxidase (GOx) inside, the shell is modified with dimeric DPA-Zn for codelivering vascular endothelial growth factor (VEGF) small interfering RNA (VEGF-siRNA). Meanwhile, the Arg-Gly-Asp peptide (RGD) peptide-engineered cell membranes coating improves angiogenesis-targeting and is biocompatible for the multifunctional nanomedicine (CEGs/RGD). After eye drops administration, CEGs/RGD targets enrichment in neovascularization and CEGs NPs enter cells. Then, the inner GOx consumes glucose with a decrease in local pH, which in turn leads to the release of EGCE and VEGF-siRNA. As a result, the nanomedicines significantly reduce angiogenesis and inhibit CNV formation through synergistic effect of antioxidant and antivascular via down-regulation of cluster of differentiation 31 and VEGF. The nanomedicine represents a safe and efficient CNV treatment through the combined effect of antioxidant/gene, which provides important theoretical and clinical significance.


Assuntos
Neovascularização da Córnea , Humanos , Neovascularização da Córnea/tratamento farmacológico , Neovascularização da Córnea/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , RNA Interferente Pequeno/farmacologia , Oligopeptídeos/farmacologia
14.
Small ; 20(2): e2302765, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37679056

RESUMO

Corneal neovascularization (CoNV) is a major cause of visual impairment worldwide. Currently, available treatment options have limited efficacy and are associated with adverse effects due to biological barriers and clearance mechanisms. To address this challenge, a novel topical delivery system is developed-Gel 2_1&Eylea-an aflibercept-loaded eye-drop hydrogel mediated with cell-penetrating peptide 1. Gel 2_1&Eylea demonstrates superior membrane permeability, increased stability, and prolonged drug retention time on the ocular surface, and thus may improve drug efficacy. In a rabbit CoNV model, Gel 2_1&Eylea significantly reduces the density of neovascularization with no adverse effects on normal corneoscleral limbal vessels, demonstrating high efficacy and biocompatibility. This work identifies a promising treatment for CoNV which has the potential to benefit other ocular neovascular diseases.


Assuntos
Peptídeos Penetradores de Células , Neovascularização da Córnea , Receptores de Fatores de Crescimento do Endotélio Vascular , Proteínas Recombinantes de Fusão , Animais , Coelhos , Neovascularização da Córnea/tratamento farmacológico , Hidrogéis , Soluções Oftálmicas/uso terapêutico
15.
Acta Pharmacol Sin ; 45(1): 166-179, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37605050

RESUMO

Dry eye disease (DED) is a prevalent ocular disorder with a multifactorial etiology. The pre-angiogenic and pre-inflammatory milieu of the ocular surface plays a critical role in its pathogenesis. DZ2002 is a reversible type III S-adenosyl-L-homocysteine hydrolase (SAHH) inhibitor, which has shown excellent anti-inflammatory and immunosuppressive activities in vivo and in vitro. In this study, we evaluated the therapeutic potential of DZ2002 in rodent models of DED. SCOP-induced dry eye models were established in female rats and mice, while BAC-induced dry eye model was established in female rats. DZ2002 was administered as eye drops (0.25%, 1%) four times daily (20 µL per eye) for 7 or 14 consecutive days. We showed that topical application of DZ2002 concentration-dependently reduced corneal neovascularization and corneal opacity, as well as alleviated conjunctival irritation in both DED models. Furthermore, we observed that DZ2002 treatment decreased the expression of genes associated with angiogenesis and the levels of inflammation in the cornea and conjunctiva. Moreover, DZ2002 treatment in the BAC-induced DED model abolished the activation of the STAT3-PI3K-Akt-NF-κB pathways in corneal tissues. We also found that DZ2002 significantly inhibited the proliferation, migration, and tube formation of human umbilical endothelial cells (HUVECs) while downregulating the activation of the STAT3-PI3K-Akt-NF-κB pathway. These results suggest that DZ2002 exerts a therapeutic effect on corneal angiogenesis in DED, potentially by preventing the upregulation of the STAT3-PI3K-Akt-NF-κB pathways. Collectively, DZ2002 is a promising candidate for ophthalmic therapy, particularly in treating DED.


Assuntos
Neovascularização da Córnea , Síndromes do Olho Seco , Ratos , Humanos , Camundongos , Animais , Feminino , Neovascularização da Córnea/tratamento farmacológico , Neovascularização da Córnea/metabolismo , Neovascularização da Córnea/patologia , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Roedores/metabolismo , Células Endoteliais/metabolismo , Inflamação/tratamento farmacológico , Síndromes do Olho Seco/tratamento farmacológico , Síndromes do Olho Seco/induzido quimicamente , Fator de Transcrição STAT3/metabolismo
16.
Exp Eye Res ; 238: 109747, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38072353

RESUMO

Corneal neovascularization (CNV) is a vision-threatening disease that is becoming a growing public health concern. While Yes-associated protein (YAP) plays a critical role in neovascular disease and allow for the sprouting angiogenesis. Verteporfin (VP) is a classical inhibitor of the YAP-TEAD complex, which is used for clinical treatment of neovascular macular degeneration through photodynamic therapy. The purpose of this study is to explore the effect of verteporfin (VP) on the inhibition of CNV and its potential mechanism. Rat CNV model were established by suturing in the central cornea and randomly divided into three groups (control, CNV and VP group). Neovascularization was observed by slit lamp to extend along the corneal limbus to the suture line. RNA-sequencing was used to reveal the related pathways on the CNV and the results revealed the vasculature development process and genes related with angiogenesis in CNV. In CNV group, we detected the nuclear translocation of YAP and the expression of CD31 in corneal neovascular endothelial cells through immunofluorescence. After the application of VP, the proliferation, migration and the tube formation of HUVECs were significantly inhibited. Furthermore, VP showed the CNV inhibition by tail vein injection without photoactivation. Then we found that the expression of phosphorylated YAP significantly decreased, and its downstream target protein connective tissue growth factor (CTGF) increased in the CNV group, while the expression was just opposite in other groups. Besides, both the expression of vascular endothelial growth factor receptor 2 (VEGFR2) and cofilin significantly increased in CNV group, and decreased after VP treatment. Therefore, we conclude that Verteporfin could significantly inhibited the CNV without photoactivation by regulating the activation of YAP.


Assuntos
Neovascularização de Coroide , Neovascularização da Córnea , Verteporfina , Animais , Ratos , Neovascularização de Coroide/tratamento farmacológico , Neovascularização de Coroide/metabolismo , Neovascularização da Córnea/tratamento farmacológico , Células Endoteliais/metabolismo , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Fator A de Crescimento do Endotélio Vascular/metabolismo , Verteporfina/farmacologia , Verteporfina/uso terapêutico
17.
Cornea ; 43(5): 627-634, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38147570

RESUMO

PURPOSE: Aniridia is a rare corneal disease that is often associated with aniridia-associated keratopathy (AAK). In AAK, the conjunctival tissue crosses the limbal border, forming a corneal pannus that extends into the corneal center. With increasing AAK severity, corneal pannus formation, vascularization, and ocular surface inflammation increase. The purpose of this study was to investigate inflammation-related mRNA expression in conjunctival epithelial cells in AAK and its relationship with AAK severity. METHODS: Using impression cytology, bulbar conjunctival cells were sampled from 20 subjects with congenital aniridia and 20 age-matched and sex-matched healthy control subjects. RNA was extracted, and mRNA analyses were performed using microarray, which was evaluated for inflammatory markers. RESULTS: In the analyzed aniridia subjects, 70 deregulated mRNAs encoding proinflammatory or antiinflammatory cytokines or factors associated with chronic inflammation, including increased IL-1, IL-8, and MIP3A/CCL20 mRNA. The most downregulated mRNA was TIMP3, and the most upregulated mRNA was Protein c-Fos.Of the 70 mRNAs, 14 inflammation-related genes were altered only in the mild AAK forms, whereas only 2 mRNAs were altered only in the severe AAK forms (TLR4 and PPARG). CONCLUSIONS: The expression of numerous proinflammatory and antiinflammatory cytokines is deregulated at the ocular surface of aniridia subjects with mild AAK. Thus, early antiinflammatory treatment may prevent or slow down corneal scarring and pannus formation in aniridia subjects.


Assuntos
Aniridia , Doenças da Córnea , Neovascularização da Córnea , Humanos , RNA Mensageiro/genética , Análise de Dados Secundários , Citologia , Doenças da Córnea/complicações , Aniridia/genética , Aniridia/complicações , Neovascularização da Córnea/complicações , Inflamação/genética , Transtornos da Visão , Citocinas/genética
18.
Invest Ophthalmol Vis Sci ; 64(14): 9, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37934158

RESUMO

Purpose: The purpose of this study was to identify the genetic cause of aggressive corneal vascularization in otherwise healthy children in one family. Further, to study molecular consequences associated with the identified variant and implications for possible treatment. Methods: Exome sequencing was performed in affected individuals. HeLa cells were transduced with the identified c.1643C>A, p.(Ser548Tyr) variant in the platelet-derived growth factor receptor beta gene (PDGFRB) or wild-type PDGFRB. ELISA and immunoblot analysis were used to detect the phosphorylation levels of PDGFRß and downstream signaling proteins in untreated and ligand-stimulated cells. Sensitivity to various receptor tyrosine kinase inhibitors (TKIs) was determined. Results: A novel c.1643C>A, p.(Ser548Tyr) PDGFRB variant was found in affected family members. HeLa cells transduced with this variant did not have increased baseline levels of phosphorylated PDGFRß. However, upon stimulation with ligand, excessive activation of PDGFRß was observed compared to cells transduced with the wild-type variant. PDGFRß with the p.(Ser548Tyr) amino acid substitution was successfully inhibited with tyrosine kinase inhibitors (axitinib, dasatinib, imatinib, and sunitinib) in vitro. Conclusions: A novel c.1643C>A, p.(Ser548Tyr) PDGFRB variant was found in family members with isolated corneal vascularization. Cells transduced with the newly identified variant showed increased phosphorylation of PDGFRß upon ligand stimulation. This suggests that PDGF-PDGFRß signaling in these patients leads to overactivation of PDGFRß, which could lead to abnormal wound healing of the cornea. The examined TKIs prevented such overactivation, introducing the possibility for targeted treatment in these patients.


Assuntos
Neovascularização da Córnea , Receptor beta de Fator de Crescimento Derivado de Plaquetas , Humanos , Córnea , Células HeLa , Ligantes
19.
Exp Eye Res ; 237: 109680, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37858608

RESUMO

Corneal neovascularization (CNV) can lead to impaired corneal transparency, resulting in vision loss or blindness. The primary pathological mechanism underlying CNV is an imbalance between pro-angiogenic and anti-angiogenic factors, with inflammation playing a crucial role. Notably, a vascular endothelial growth factor(VEGF)-A gradient triggers the selection of single endothelial cells(ECs) into primary tip cells that guide sprouting, while a dynamic balance between tip and stalk cells maintains a specific ratio to promote CNV. Despite the central importance of tip-stalk cell selection and shuffling, the underlying mechanisms remain poorly understood. In this study, we examined the effects of bone morphogenetic protein 4 (BMP4) on VEGF-A-induced lumen formation in human umbilical vein endothelial cells (HUVECs) and CD34-stained tip cell formation. In vivo, BMP4 inhibited CNV caused by corneal sutures. This process was achieved by BMP4 decreasing the protein expression of VEGF-A and VEGFR2 in corneal tissue after corneal suture injury. By observing the ultrastructure of the cornea, BMP4 inhibited the sprouting of tip cells and brought forward the appearance of intussusception. Meanwhile, BMP4 attenuated the inflammatory response by inhibiting neutrophil extracellular traps (NETs)formation through the NADPH oxidase-2(NOX-2)pathway. Our results indicate that BMP4 inhibits the formation of tip cells by reducing the generation of NETs, disrupting the dynamic balance of tip and stalk cells and thereby inhibiting CNV, suggesting that BMP4 may be a potential therapeutic target for CNV.


Assuntos
Lesões da Córnea , Neovascularização da Córnea , Humanos , Neovascularização da Córnea/metabolismo , Proteína Morfogenética Óssea 4/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Córnea/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Lesões da Córnea/metabolismo , Neovascularização Fisiológica
20.
Zhonghua Yan Ke Za Zhi ; 59(10): 824-831, 2023 Oct 11.
Artigo em Chinês | MEDLINE | ID: mdl-37805416

RESUMO

Objective: To investigate the long-term outcomes of corneal grafts after penetrating keratoplasty(PK) for congenital corneal opacity(CCO) in children aged 0 to 5 years and the related influencing factors. Methods: It was a retrospective series case study. Data of 39 children (55 eyes) who underwent PK surgery due to CCO in the keratology Department of Beijing Tongren Hospital from April 2014 to April 2018 and were followed up for more than 30 months were collected. Among them, there were 17 males (43.6%) and 22 females (56.4%). The age at operation was (16.2±13.3) months, and the follow-up time was (46.4±13.8) months. Clinical data such as basic information, preoperative diagnosis, operation age, operation method and postoperative complications were recorded. The corneal graft transparency was analyzed according to preoperative diagnosis, corneal neovascularization area, age at surgery, monocular or binocular surgery interval, primary surgery type and further surgery, and postoperative complications were observed. Results: At 12 months, 24 months and the last follow-up after PK, 78.2% (43/55), 70.9% (39/55) and 58.2% (32/55) of the affected eyes had clear corneal grafts, respectively.There was no statistical significance between Peters anomaly and sclerocornea (P>0.05), while the extent of neovascularization in the limbus had a significant effect on corneal graft transparency, and graft opacity was more likely to occur in patients with vessel area exceeding 2 quadrants (P<0.05).The highest corneal graft transparency was found in children aged 1 to 3 years 80.8%(21/26) (P<0.05), followed by children younger than 6 months (7/15).The translucency rate of the corneal graft was higher in patients undergoing unilateral surgery than in those undergoing bilateral surgery (P<0.05).Translucency of corneal graft was higher in children with simple surgery than with combined surgery (P<0.05), however, cataract surgery after PK had no significant effect on corneal graft transparency (P>0.05).The postoperative complications mainly included immune rejection in 19 eyes (34.5%), complicated cataract in 13 eyes (23.6%), glaucoma in 7 eyes (13.2%), persistent corneal epithelial defect in 7 eyes (13.2%). Conclusions: After PK in children with CCO, the transparent rate of corneal grafts decreases gradually with time, but the long-term translucency of corneal grafts can still be obtained. The range of corneal neovascularization, age at the time of surgery, whether the surgery was binocular and whether the surgery was combined had an effect on the transparency of corneal graft.


Assuntos
Catarata , Neovascularização da Córnea , Opacidade da Córnea , Criança , Masculino , Feminino , Humanos , Ceratoplastia Penetrante/efeitos adversos , Estudos Retrospectivos , Opacidade da Córnea/cirurgia , Complicações Pós-Operatórias/cirurgia , Catarata/complicações , Sobrevivência de Enxerto , Seguimentos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...